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1 Introduction

Many topological invariants have been computed from matrix models of moduli spaces. The

well-known Kontsevich’s Airy matrix model [1] gives the intersection numbers of the moduli

spaces of curves, which was also studied by the double scaling limit of one matrix model [2].

The Euler characteristics of orbifolds have been computed from the Penner model [3]. The

intersection numbers for the p-spin curves are obtained from the generalized Kontsevich

model [4]. These matrix models all provide explicit results for the intersection numbers.

In this article, we discuss the above models, which lead to three kinds of matrix

models, in a unified way. Our formulation starts from simple Gaussian matrix models

with an external matrix source. In recent articles we have already considered the average

characteristic polynomials in these Gaussian ensembles, and derived, through a duality

relation and the replica method, the intersection numbers of p-spin curves [5–7]. This

duality relates the average of the product of k characteristic polynomials for N×N random

matrices M , to the average of the product of N characteristic polynomials over k × k

Gaussian random matrices B. In the large N limit, the matrix model for B reduces to the

higher Airy matrix [6, 7] for the intersection numbers of spin curves studied by Witten [4, 8].

This duality allows one to compute the intersection numbers for the spin moduli spaces

with n-marked points and genus g, from an n-point correlation function U(s1, . . . , sn) of
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Gaussian random matrices in a scaling limit near critical edges [9, 10]. The basic steps are

recalled in section 2.

In this article we first compute explicitly the intersection numbers of moduli space of

p-spin curves with one marked point, for arbitrary values of p, as polynomials in p. We have

obtained earlier the intersection numbers for p=2,3 and 4 explicitly, but we discuss here

arbitrary p. This allows us to consider continuations in p; in particular the limit p → −1

exhibits an interesting relation between the intersection numbers, (τ -class) and the orbifold

Euler characteristics χ(Mg,1) = ζ(1−2g) (ζ(x) is Riemann zeta function) [3, 11]. In section

3 we derive these numbers for surfaces with one marked point.

In section 4 we show that the intersection numbers with n-marked points for p-spin

curves are also obtained easily from the integral representation of U(s1, . . . , sn) at the

critical values tuned through an appropriate external source. We evaluate the case of two

marked points for genus one (g=1) and any p. The generating function U is given for

three and four marked points in appendices A and B. Our results through this generating

function U are consistent with the previous recursive results of Virasoro equations. We find

that the ring structure of the primary fields, for genus zero, is deduced from these n-point

correlation functions U for arbitrary p. This shows that the random matrix theory with

external source near critical edges, has a structure of a minimal N = 2 superconformal

field theory with Lie algebra Ap−1.

It has been conjectured by Witten that the free energy F which generates the intersec-

tion numbers of the moduli space of p-spin curves satisfies a Gelfand-Dikii hierarchy [4, 12].

We show here that the intersection numbers, computed from the integral representation of

U(s1, . . . , sn), do satisfy Gelfand-Dikii equations. We present in appendix C, this Gelfand-

Dikii hierarchy equations and the construction of the super potential for the primary fields.

We also note that, with respect to Witten’s conjecture, that the definition of intersection

numbers as an integral over the compactified moduli space M̄g,n, is similar in structure to

the integral representation of U(s1, . . . , sn).

In section 5, begins a second part of the paper devoted to the time dependent Gaussian

matrix model for which we extend our previous work on duality [5–7]. The time-dependent

model, a matrix quantum mechanics of harmonic oscillators, reduces easily, for a Gaussian

distribution, to an equivalent two-matrix model. Again one may derive (section 6) a dual

model in the presence of a matrix source. We then obtain, with an appropriate tuning of

the source, the two-matrix equivalents of the Kontsevich plus Penner models for matter

with central charge c = 1 for the p = 2 case. For p > 2, additional terms are present with

respect to the c=1 matrix model for tachyon correlators [14, 15].

2 Replica and duality for the one-matrix model

Let us first summarize the steps which one uses to obtain Airy and higher Airy matrix

models from the Gaussian one-matrix model in a source, followed by the computation of

the intersection numbers through the replica method [5–7].

– 2 –
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The m-point correlation functions of the eigenvalues in the Gaussian unitary ensemble

are conveniently deduced from their Fourier transforms U(s1, . . . , sm), defined as

U(s1, s2, . . . , sm) = < tres1M tres2M · · · tresmM >

=

∫ m
∏

l=1

dλle
P

itlλl <

m
∏

1

trδ(λj −M) > (2.1)

where sl = itl; M is an N ×N Hermitian random matrix. The bracket stands for averages

with the Gaussian probability measure

< X >A=

∫

dMe−
N
2

trM2+NtrMAX(M), (2.2)

A is anN×N external Hermitian source matrix. We may assume that this matrix A is diag-

onal with eigenvalues aj. We consider later the external source A with (p−1) distinct eigen-

values, each of them being N
p−1 times degenerate. This parameter p is crucial in this paper.

Let us consider first the one point case (m=1), namely U(s). The replica limit k → 0

for < trδ(λ−M) > relies on the identity

lim
k→0

1

k

(

[det(λ · I −M)]k − 1
)

= trlog(λ · I −M) (2.3)

Taking a derivative with respect to λ, it yields the density of states trδ(λ −M) as the

imaginary part of the resolvent when the imaginary part of λ goes to zero. Thus U(s) is

expressed in terms of products of characteristic polynomials,

U(s) = lim
k→0

1

k

∫

dλesλ
∂

∂λ
<

k
∏

α=1

det(λα −M) >A |λα=λ (2.4)

We have introduced a replica symmetry breaking by taking k distinct λα (α = 1, . . . , k) [16],

in order to use the duality formula [6, 17],

1

Z0
<

k
∏

α=1

det(λα −M) >A=
1

Z ′
0

<

N
∏

j=1

det(aj − iB) >Λ . (2.5)

where Λ = diag(λ1, . . . , λn), B is an k × k Hermitian random matrix, and Z0 and Z ′
0 are

normalization constants. The probability distribution for B in the right hand side is

< Y >Λ=

∫

dBe−
N
2

trB2+iNtrBΛY (B) (2.6)

The simplest case consists of taking an external source multiple of the identity, namely aj =

1, j = 1, . . . N . The effect of this source is simply to shift all the eigenvalues of M by one:

the left edge of Wigner’s semi-circle is now at the origin. In the large N limit, after exponen-

tiation, expansion of the integrand in powers of B, cancellation of the trB2 terms, we obtain

Z = lim
N→∞

< [det(1 − iB)]N >Λ=

∫

dBe
iN
3

trB3+iNtrB(Λ−1) (2.7)
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which is Kontsevich Airy matrix-model. (We explore here a “double scaling limit”, namely

the vicinity of the origin, in which the (λa − 1) are of order N−2/3, B of order N−1/3; in

this regime NtrBl is negligible for l ≥ 4). This Airy matrix model has an expansion in

terms of the moduli parameters tm,

tm = Ctr
1

Λ2m+1
= C

k
∑

α=1

1

λ2m+1
α

(2.8)

Z =
∑

m,km

<
∏

m

τkm
m >

∏

m

tkm
m

km!
(2.9)

where C is a normalization constant, to be determined later. When we set the k distinct

λα to a common value λ, we have tm = C k
λ2m+1 . Then, in the limit k → 0, only single

τ ’s appear, since the parameter tm is proportional to k. Thus the zero-replica limit k → 0

yields the intersection numbers with one-marked point (one tm):

U(s) =

∫

dλesλ
∂

∂λ
[1+ < τ1 > t1+ < τ4 > t4 + · · · ] (2.10)

where < τ1 >= 1
24 , < τ4 >= 1

(24)22!
. As found in [5], U(s) is obtained, after approriate

normalization, as

U(s) =
1

s3/2
e

s3

24 (2.11)

which gives the intersection number < τm > for the moduli space of curves with one

marked point,

< τm >=
1

(24)gg!
(2.12)

where g is the genus of the curve and m = 3g − 2. We have thus shown that the Fourier

transform U(s) gives the intersection numbers < τm > of the moduli space of curves with

one marked point [5, 18].

The replica limit k → 0, where the matrix B is k × k, was studied in [6], and it

gives the intersection numbers of (2.12). Note that in the original Kontsevich model

of (2.7), the matrix size k was arbitrary, and the universal intersection numbers < τm >

are independent of k.

From other tunings of the external source aj , we may obtain also the intersection

numbers of the moduli space of p-spin curves [4] with one marked point, which exhibit

“spin structures”. Indeed we may tune the external source so that the asymptotic density

of states vanishes at an edge as ρ(λ) ∼ λ
1
p . This will yield the exact values for p-spin

curves with genus g and one marked point. A spin index j = 0, 1, . . . , p− 1 is now needed.

From this tuning of the external source, we obtain the generalized Kontsevich model,

Z =

∫

dBe
i

p+1
trBp+1−itrBΛp

(2.13)

where B is k× k. The derivation of this partition function from the right hand side of the

duality formula (2.5) will be given in the next section. This Z has an expansion,

Z =
∑

m,j,km,j

<
∏

m,j

τ
km,j

m,j >
∏

m

t
km,j

m,j

km,j !
(2.14)
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where

tm,j = (−p)
j−p−m(p+2)

2(p+1)

m−1
∏

l=0

(1 + j + lp)tr
1

Λpm+j+1
. (2.15)

The normalization constant C in (2.8) is fixed by (2.15). The intersection numbers of

moduli space of p-spin curves are defined by the integral formula of compactified the moduli

space M̄g,n [8]

< τn1(Uj1) · · · τns(Ujs) >=
1

(k̂ + 2)g

∫

M̄g,s

CT (ν)

s
∏

i=1

(c1(Li))ni (2.16)

where Uj is an operator for the primary matter field (tachyon), related to top Chern class

CT (ν), and τn is a gravitational operator, related to the first Chern class c1 of the line

bundle Li at the ith-marked point. We denote τn(Uj) by τn,j, and j represents the spin

index (j=0,. . . ,p-1). The indices ni and ji are related to genus g and numbers of marked

points s through

(p+ 1)(2g − 2 + s) =

s
∑

i=1

(pni + ji + 1). (2.17)

This intersection theory for spin-curves [4] is known to be related to the minimal N = 2

superconformal field theory of Lie algebra Ap−1 type, which is equivalent to SU(2)k̂/U(1)

Wess-Zumino-Witten model. k̂ is a number of levels and it is related to p by k̂ = p−2. This

relation is derived from a super potential W for the chiral ring structures of primary fields;

we will obtain this chiral structure later by the consideration of the n-point correlation

functions U(s1, . . . , sn) (see appendix C).

As remarked by Witten [4], the limit p→ −1 (k̂ → −3) corresponds to the top Chern

class without gravity decendants c1(Li), and this top Chern class becomes the orbifold

Euler characteristic class [3, 11].

For 3 ≤ p, we have to consider the above spin structures for the intersection numbers.

We find the intersection number with one marked point for arbitrary genus, < τn,j > [7]

for p=3 as

< τn,j >g=
1

(12)gg!

Γ
(

g+1
3

)

Γ
(

2−j
3

) (2.18)

where n = (8g − 5 − j)/3 and j = 0 for g = 3m+ 1, j = 1 for g = 3m (m = 1, 2, . . .).

In the replica limit, k → 0 for the matrix B, a closed expression for U0(s1, . . . , sk)

is known [6] (the surfix “0” refers to zero external source in the Gaussian probability

distribution),

lim
k→0

U0(s1, . . . , sn) =
1

σ2

n
∏

i=1

2sinh
(siσ

2

)

(2.19)

where σ =
∑n

i=1 si, in which U0(s1, . . . , sn) is defined by

U0(s1, . . . , sn) = < tres1B · · · tresnB >

=
∑

li

<

n
∏

i=1

trBli >

n
∏

i=1

slii
li!
. (2.20)

– 5 –
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From (2.19), we obtain the intersection numbers of p-spin curves with one marked

point. The replica limit k → 0 selects only the one marked point ribbon graphs on a genus

g-Riemann surface. This method gives the intersection numbers of p-spin curves with one

marked point, and the results coincide with those obtained from U(s) [6].

For two marked points, one deals with the dual quantity U(s1, s2), again at a critical

edge point. The correspondence is the same as for the one-marked point. We have

U(s1, s2) = < tres1M tres2M >

=

∫

dλ1dλ2e
s1λ1+s2λ2 < trδ(λ1 −M)trδ(λ2 −M) >

= lim
k1,k2→0

∫

dλ1dλ2e
s1λ1+s2λ2

∂2

∂λ1∂λ2
< [det(λ1 −M)]k1 [det(λ2 −M)]k2 >

= lim
k1,k2→0

∫

dλ1dλ2e
s1λ1+s2λ2

∂2

∂λ1∂λ2
< [det(1 − iB)]N >Λ (2.21)

where Λ = diag(λ1, . . . , λ1, λ, . . . , λ2), λ1 and λ2 are degenerate k1 and k2 times respec-

tively. The matrix B is an (k1 + k2) × (k1 + k2) Hermitian matrix. In the limit of zero

replica, one selects the terms of order k1k2 in the Airy matrix model, for instance a term

like k1
λ3
1

k2
λ3
2
, and we obtain the two marked points contribution for the intersection numbers.

The Fourier transform U(s1, s2), with respect to λ1 and λ2, gives the intersection numbers

as coefficients of the Taylor expansion in s1 and s2. For the case p=2, this was checked for

arbitrary genus [5] and it does yield the known values.

For higher marked points, the argument is similar. For n marked points, one considers

the terms
∑

< τm1 · · · τmn >
k1 · · · kn

λ2m1+1
1 λ2m2+1

2 · · ·λ2mn+1
n

(2.22)

emerging from the B-matrix integral. The Fourier transform of these quantities is given

by U(s1, s2, . . . , sn).

Thus we have indeed a method for computing the intersection numbers of the moduli

of curves from random matrix theory, based on the expression for U(s1, . . . , sn).

An exact and useful integral representation for U(s1, . . . , sn) is known in the presence

of an external matrix source A [19].

U(s1, . . . , sn) =
1

N
〈tres1M · · · tresnM〉

= e
Pn

1 s
2
i

∮ n
∏

1

dui
2πi

e
Pn

1 uisi

N
∏

α=1

n
∏

i=1

(

1 − si
aα − ui

)

det
1

ui − uj + si
(2.23)

We will use this formula in the following sections to obtain the intersection numbers of

p-spin curves of arbitrary genus g for n-marked points, through an appropriate tuning of

the external source aj, in a scaling large N limit.

– 6 –
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3 The p-dependence of the intersection numbers with one marked point

The partition function Zp for the generalized Kontsevich model is given by the k × k

Hermitian matrix B,

Zp =

∫

dBe
1

p+1
trBp+1−trBΛ (3.1)

This model is obtained, after use of the duality, from the expectation values of characteristic

polynomials (2.5). We take here an external source A with (p − 1) distinct eigenvalues,

each of them being N
p−1 times degenerate: A = diag(a1, . . . , a1, . . . ., ap=1, . . . ., ap−1). After

duality, the expectation values of characteristic polynomials become

<

p−1
∏

α=1

det(aα − iB)
N

p−1 >=< exp

[

p−1
∑

α=1

trlog

(

1 − iB

aα

)

+N
∑

log

(

p−1
∏

α=1

aα

)]

> (3.2)

We now specify the (p − 1) distinct eigenvalues of the external source by the (p − 1)

conditions:

p−1
∑

α

1

a2
α

=p− 1,

p−1
∑

α=1

1

amα
=0, (m = 3, 4, . . . , p)

p−1
∑

α=1

1

ap+1
α

6=0. (3.3)

Then, the expectation values of the characteristic polynomials lead to (3.1) in the double

scaling limit.

We first consider the intersection numbers with one marked point. They are related

to the coefficients of tr 1
Λm , in the zero-replica limit k → 0 as we have seen in the previous

section. In this limit the matrix Λ can be taken as multiple of the identity Λ = λ · 1. We

introduce a coupling constant g as

B → B

g
(3.4)

Zp =

∫

dBe
1

(p+1)gp+1 trBp+1−Λ
g
trB

(3.5)

We set gs = gp+1 and tune Λ so that gs = g
Λ . Then we obtain, after the shift B → 1 +B,

Zp =

∫

dBe
1

(p+1)gs
tr(1+B)p+1− 1

gs
tr(1+B)

(3.6)

Expanding for small B, we have

Zp =

∫

dBe
p

2gs
trB2+

p(p−1)
3!gs

trB3+
p(p−1)(p−2)

4!gs
trB4··· (3.7)

We now expand in powers of gs after the replacement B → i
√

gs

p B.

Using the replica formula (2.19) for one marked point, we obtain limk→0
1
k < trB4 >=

1, limk→0
1
k < (trB3)2 >= 3, . . .. Using these values for the products of vertices, we have

lim
k→0

logZp = −p− 1

24

(

gs
p

)

+
(p − 3)(p − 1)(p + 3)(1 + 2p)(3 + 2p)

1920

g3
s

p3
+O

(

g5
s

)

(3.8)

– 7 –
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The coefficients of the above expansion are intersection numbers multiplied by tm,j
in (2.15), the first term for genus one, the second for genus two, etc. . . From (2.15), we

have t1,0 = −1
ptr

1
Λp+1 . Therefore, the intersection number of one marked point for genus

one becomes

< τ1,0 >g=1=
p− 1

24
. (3.9)

For genus two, we have t3,2 = (−p)−23(3 + p)(3 + 2p)tr 1
Λ3p+3 , and

< τ3,2 >g=2=
(p− 1)(p − 3)(1 + 2p)

p · 5! · 42 · 3 . (3.10)

For g = 2 and p = 2, we have t4,0 = −3·5·7
23 tr 1

Λ9 and this gives < τ4,0 >g=2=
1

1152 . The

expansion of (3.8) can be obtained for any higher order of genus g by the use of replica

formula of (2.19) although the evaluation becomes tedious.

We now turn to the dual model, formulated with N × N random matrices M ; the

Fourier transform U(s) of the one point correlation function is given in (2.23).

We are still in the case in which the external source aα takes values p − 1 different

values of a1, a2, . . . , ap−1 with N
p−1 degeneracy.

We have from (2.23),

U(s) =
e

s2

2

Ns

∮

du

2iπ
euse

Pp−1
α=1

N
p−1

log(aα−u−s)−
Pp−1

α=1
N

p−1
log(aα−u) (3.11)

Expanding u(s) for small u and s, we have

U(s) =
e

s2

2

Ns

∮

du

2iπ
e
−s
P N

(p−1)aα
+
“

s2

2
+us

”

„

1− N
p−1

P 1

a2
α

«

−
P∞

n=3
N

n(p−1)an
α

((u+s)n−un)
(3.12)

With the conditions (3.3), we obtain, after the shift u→ u− s
2 ,

U(s) =
1

Ns

∫

du

2iπ
e
− c

p+1

h

(u+ 1
2
s)

p+1−(u− 1
2
s)

p+1
i

(3.13)

where c = N
p−1

∑ 1
ap+1

α
.

Expanding the exponent, we obtain

U(s) =
1

Ns

∫

du

2iπ
exp[−csup]

×exp

[

−c
(

p(p− 1)

3!4
s3up−2 +

p(p− 1)(p − 2)(p − 3)

5!42
s5up−4 + · · ·

)]

. (3.14)

– 8 –
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This integrals yield Gamma functions after the replacement u =
(

t
cs

)1/p
,

U(s) =
1

Nspπ
· 1

(cs)1/p

∫ ∞

0
dtt

1
p
−1e−t

×e−
p(p−1)

3!4
s
2+ 2

p c
2
p t

1− 2
p − p(p−1)(p−2)(p−3)

5!42
s
4+ 4

p c
4
p t

1− 4
p +···

=
1

Nsπ
· 1

(cs)1/p

[

Γ

(

1 +
1

p

)

− p− 1

24
yΓ

(

1 − 1

p

)

+
(p− 1)(p − 3)(1 + 2p)

5! · 42 · 3 y2Γ

(

1 − 3

p

)

−(p− 5)(p − 1)(1 + 2p)(8p2 − 13p− 13)

7!4332
y3Γ

(

1 − 5

p

)

+(p− 7)(p − 1)(1 + 2p)(72p4 − 298p3 − 17p2 + 562p + 281)

× 1

9!4415
y4Γ

(

1 − 7

p

)

· · ·
]

(3.15)

with y = c
2
p s

2+ 2
p .

Comparing this expansion with (3.8), we find a common p-dendence, but (3.8) has

additional factors. These additional factors should be included in the normalization. The

intersection numbers < τn,j >g are the coefficients of (3.15), and then the two results

of (3.8) and (3.15) coincide. The expansion of U(s) is easily obtained up to arbitrary order

of genus g since U(s) is simply given by (3.13). Thus the dual model is simpler than the

the partition function of the matrix B.

The expansion of U(s) in (3.15) is genus expansion. We write this expansion as

U(s) =
∑

g

< τn,j >g
1

Nπ
Γ

(

1 − 1

p
− j

p

)

c
2g−1

p pg−1s
(2g−1)

“

1+ 1
p

”

, (3.16)

where n and j are given by

(p+ 1)(2g − 1) = pn+ j + 1. (3.17)

From (3.15), the intersection numbers < τn,j > are determined explicitly for arbitrary p.

For g = 1 case, by the condition of (3.17), we obtain n = 1 and j = 0, and

< τ1,0 >g=1=
p− 1

24
. (3.18)

For g = 2, we have n = 3 + 2−j
p . The intersection numbers for arbitrary p become

< τn,j >g=2=
(p− 1)(p − 3)(1 + 2p)

p · 5! · 42 · 3
Γ
(

1 − 3
p

)

Γ
(

1 − 1+j
p

) . (3.19)

For instance, we obtain < τ3,2 >g=2=
(p−1)(p−3)(1+2p)

p5!·42·3 , which agrees with the result of (3.10)

evaluated from (3.8). For p = 2, we have from this formula, < τ4,0 >g=2=
1

(24)22!
, since the

ratio of the gamma functions becomes −2.
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For g = 3, we have the intersection numbers for arbitrary p with n = 5 + 4−j
p ,

< τn,j >g=3=
(p− 5)(p − 1)(1 + 2p)(8p2 − 13p− 13)

p2 · 7! · 43 · 32

Γ
(

1 − 5
p

)

Γ
(

1 − 1+j
p

) . (3.20)

For g = 4, we have the intersection numbers with thecondition n = 7 + 6−j
p ,

< τn,j >g=4 =
(p− 7)(p − 1)(1 + 2p)(72p4 − 298p3 − 17p2 + 562p + 281)

p3 · 9! · 44 · 15
Γ
(

1 − 7
p

)

Γ
(

1 − 1+j
p

) .

(3.21)

Thus the expansion of U(s) gives the intersection numbers of one marked point for

arbitrary p in the case of fixed g. We have given the explicit expressions up to order g = 4

only. Also the integral representation of U(s) in (3.13) gives the intersection numbers for

arbitrary g for fixed p. As shown before in [7], the intersection numbers for p = 2 becomes

< τn,0 >g=
1

(24)gg!
, (n = 3g − 2). (3.22)

For p = 3,

< τn,j >g=
1

(12)gg!

Γ
(

1+g
3

)

Γ
(

2−j
3

) , (3.23)

with 3n = 8g − 5 − j.

We now consider the interesting limit p → −1. We consider the spin index j as j = 0

in this limit. From the condition of (3.17), we obtain n = 1. The intersection number of

p = −1 case is then < τ1,0 >g, which we write simply as < τ >g in the following. From

the previous evaluations in (3.18)–(3.21), we obtain in the limit p→ −1,

< τ >g=1 =
p− 1

24
→ − 1

12

< τ >g=2 =
(p− 1)(p − 3)(1 + 2p)

5!42

Γ
(

1 − 3
p

)

Γ
(

1 − 1
p

) → − 1

120

< τ >g=3 → − 1

252
, < τ >g=4 → − 1

240
. (3.24)

These numbers are the Euler characteristics χ(Mg,1) [3, 11].

χ(Mg,1) = ζ(1 − 2g) = −B2g

2g
(3.25)

where ζ is the Riemann zeta-function and B2g is the Bernoulli number; B2 = 1
6 , B4 =

− 1
30 , B6 = 1

42 , B8 = 1
30 · · · .

The logarithmic term of the Penner model follows indeed in the limit p→ −1 of (3.13).

Then computing U(s) for p→ −1, one obtains the Euler characteristics.
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In the limit p→ −1, c = N
p−1

∑ 1
aα

p+1 is N , and from (3.13), U(s) is given by

U(s) =
1

Ns

∫

du

2iπ
e
−N log

u+1
2 s

u− 1
2 s

=
1

N

∫

du

2iπ

(

u− 1
2

u+ 1
2

)N

(3.26)

Setting

u− 1

u+ 1
= e−y,

(

u =
1 + e−y

1 − e−y

)

(3.27)

one has

U(s) = − 1

N

∫

dy

2π

e−y

(1 − e−y)2
e−Ny =

∫ ∞

0

dy

2π

e−Ny

1 − e−y
(3.28)

Noting that

1

1 − e−t
=

∞
∑

n=0

Bn
tn−1

n!
(3.29)

we obtain U(s) as

U(s) =
1

N

∫ ∞

0
dt

1

1 − e−
t
N

e−t =
∞
∑

n=0

Bn
n

(

1

N

)n

= 1 − 1

2N
+

1

12N2
− 1

120

1

N4
+

1

252

1

N6
+ · · · (3.30)

Then we obtain the genus g, orbifold Euler characteristics χ(Mg,1) = ζ(1 − 2g) = − 1
2gB2g

from the term of order 1/N2g. Thus the analytic continuation for negative p holds for the

dual model.

4 The n-point correlation functions

We consider the two-point correlation function U(s1, s2) defined in (2.1). Noting that the

two terms of the determinant in (2.23) become, after the shift ui → ui − si
2 , si → si

N ,

1

u1 − u2 + 1
2N (s1 + s2)

1

u1 − u2 − 1
2N (s1 + s2)

=

(

1

u1 − u2 − 1
2N (s1 + s2)

− 1

u1 − u2 + 1
2N (s1 + s2)

)

N

s1 + s2
(4.1)

we write it as

1

u1− u2+ 1
2N (s1+ s2)

1

u1− u2− 1
2N (s1+ s2)

=
N

s1+ s2

∫ ∞

0
dxe−x(u1−u2)sh

( x

2N
(s1+s2)

)

(4.2)
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We have at the same p-th critical point defined for the one point function,

U(s1, s2) =
2N

s1+ s2

1

(2πi)2

∫ ∞

0
dx

∫

du1du2sh

(

1

2N
x(s1 + s2)

)

×exp

[

− N

p2− 1

∑ 1

ap+1
α

(

∑

i

(

ui+
1

2N
si

)p+1

−
∑

i

(

ui −
1

2N
si

)p+1
)]

(4.3)

We use the notation, c =
∑

α
1

ap+1
α

. After the change of variables ui → ivi (i=1,2), the

rescalings vi → (p−1
pcsi

)
1
p vi, and x→ (pcs1p−1 )

1
px, we obtain

U(s1, s2) =
2N ′

s1 + s2

(

1

s2

) 1
p
∫ ∞

0
dx

∫ ∞

−∞

dv1dv2
(2π)2

sh

(

x

2N ′ s
1
p

1 (s1 + s2)

)

e
−ixv1+ixv2(

s1
s2

)
1
p

2
∏

i=1

G(vi) (4.4)

where we used N ′ = N
(

p−1
pc

) 1
p
, and

[p
2

]

= p
2 for even p and

[p
2

]

= p−1
2 for odd p. The

factor G(vi) is given by

G(vi) = exp






− i

p

p
vpi − ip

[ p
2 ]
∑

m=1

(−1)m(p − 1)!

(2m+ 1)!22m(p − 2m)!N ′2m s

“

2+ 2
p

”

m

i vp−2m
i






. (4.5)

The genus g of the terms in the expansion (4.5) is given by the exponent of 1
N ′2g . We

are interested in the terms of type s
n1+

m1
p

1 s
n2+

m2
p

2 in (4.4). The correspondence with the

variable tn,m ∼ tr 1
Λpn+m+1 is

sn+ m+1
p ∼ tn,m (4.6)

Thus we obtain the intersection numbers < τn1,m1τn2,m2 >g from the coefficients of the

terms s
n1+

m1+1
p

1 s
n2+

m2+1
p

2 . For instance, we have from s
1
p

1 s
2+ 1

p

2 in (4.4),

< τ0,0τ2,0 >g=1=
p− 1

24
(4.7)

This value coincides with < τ1,0 >g=1=
p−1
24 , and we have

< τ0,0τ2,0 >g=1=< τ1,0 >g=1 (4.8)

which is consistent with the string equation. Indeed the generating function F for the

intersection numbers satisfies the string equation [4],

∂F

∂t0,0
=

1

2

p−2
∑

m,m′=0

ηmm
′

t0,mt0,m′ +
∞
∑

n=1

p−2
∑

m=0

tn+1,m
∂F

∂tn,m
(4.9)

where the metric ηmm
′
= δm+m′,p−2.
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If we substitute F = at1,0 (a is some constant) in the second term, then we have ∂F
∂t0,0

=

t2,0
∂F
∂t1,0

= at2,0, which yields at0,0t2,0 after integration. Thus we have < τ0,0τ2,0 >=< τ1,0 >

from the string equation (4.9).

Note that in the two point correlation (two marked points), there is no genus zero

contribution to the intersection numbers, an easy consequence of (4.4).

It is useful to define the higher Airy functions φp(x) by

φp(x) =

∫

dv

2π
e
− ip

p
vp+ixv

(4.10)

When p = 3, it reduces to the usual Airy function Ai(x),

φ3(x) = Ai(x) =
1

2π

∫ ∞

−∞
dve

i
3
v3+ixv (4.11)

which satisfies the differential equation,

φ3(x)
′′ = xφ3(x) (4.12)

For general p, we have
dp−1φp(x)

dxp−1
= xφp(x) (4.13)

Expanding in powers of 1
N ′ , after integration by parts for the function φp(x), we obtain

all intersection numbers from (4.4) for two marked points. In the case p = 2, the function

φp(x) is Gaussian, and we are led to

U(s1, s2) =
2N

(s1 + s2)
√
s2
e

1
24N2 (s31+s32)

∫ ∞

0
dx sh

(

x

√
s1

2N
(s1 + s2)

)

e
− 1

2
s1+s2

s2
x2

=
N

s1 + s2
e

1
24N2 (s1+s2)3

∞
∑

m=0

(−1)m

m!(2m+ 1)

(

s1s2(s1 + s2)

8N2

)m√
s1s2 (4.14)

which has been obtained in [5, 18]. The intersection numbers are given by

U(s1, s2) =
∑

n1,n2

< τn1,0τn2,0 >g
sn1
1 sn2

2

N2g
(4.15)

where the genus g is specified by

n1 + n2 = 3g − 2. (4.16)

For the p = 3 case, we have

U(s1, s2) =
2N ′

s1 + s2

(

1√
s2

)
1
3
∫ ∞

0
dx sh

(

x

2N ′ s
1
3
1 (s1 + s2)

)

Ai(x)Ai

(

−x
(

s1
s2

)
1
3

)

(4.17)

which gives the intersection numbers of two-marked points. For instance, we obtain

< τ0,0τ2,0 >g=1=
1

12
, < τ2

1,0 >g=1=
1

12
(4.18)
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In general, the integral formula of (2.23) gives the n-point correlation function

U(s1, . . . , sn). In appendix A, we compute the intersection numbers for three marked

points from the three point functionU(s1, s2, s3). In appendix B, the intersection numbers

with four marked points are computed from the four point correlation function.

The intersection numbers for the primary field Uj of (2.16), in the genus zero case, are

particularly important, since they have algebraic structures related to a super-conformal

field theory [4, 13]. They are expressed as <
∏n
m=1 τ0,qm >.

In appendix A, we compute the intersection numbers (A.8) as

< τ0,q1τ0,q2τ0,q3 >g=0= δq1+q2+q3,p−2 (4.19)

From this result, the free energy F follows

F =
∑

< τ0,q1τ0,q2τ0,q3 >g=0 t0,q1t0,q2t0,q3 +O(t4) (4.20)

To make the algebraic structure more explicit, we define the structure constants Cijk by

Cijk =
∂3F

∂ti∂tj∂tk
(4.21)

where

ti = t0,i−1, (i = 1, . . . , p− 1) (4.22)

For instance for p=5, we have

F =
1

2
t20,0t0,3 + t0,0t0,1t0,2 +

1

3!
t30,1 +O(t4) (4.23)

and the structure constants are C114 = C123 = C222 = 1. From these structure constants,

following [4] one can construct the super potential W (see appendix C). The free energy

F , which generates the intersection numbers of the moduli space of p-spin curves, has

been conjectured by Witten to be solution of the Gelfand-Dikii hierarchy [4]. We present

in appendix C, this Gelfand-Dikii hierarchic equations as well as the construction of the

super potential for the primary fields.

Thus, we find that the intersection numbers, derived from the integral representation

of U(s1, . . . , sn), satisfy indeed the Gelfand-Dikii equations.

Returning to Witten’s conjecture, we note that the definition of the intersection num-

bers by the vector bundle integration over the compactified moduli space M̄g,n in (2.16),

is similar in structure to the integral representation for U(s1, . . . , sn) of (2.23), although

U(s1, . . . , sn) involves a summation over all genuses g, for fixed n-marked points.

5 Time-dependent Gaussian matrix model

Let us briefly recall how one shows that the time-dependent one matrix model is equivalent

to a time-independent two-matrix model when the distributions are Gaussian. ( In an older

work we had considered the time-dependent Gaussian matrix problem, and computed time-

dependent correlation functions [20]).
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The time-dependent Gaussian matrix model is the partition function (i.e. the Euclidean

path integral) for the matrix quantum mechanics, with action

S =

∫

dt
1

2
tr(Ṁ2 +M2) (5.1)

where M is an N ×N Hermitian matrix; (the dot stands for time derivative). This model,

at criticality, is known to describe gravity coupled to matter of central charge c = 1 [21].

The time-dependent correlation function is defined by

ρ(λ, µ; t) =<
1

N
trδ(λ −M(t1))

1

N
trδ(µ−M(t2)) > (5.2)

and, from time-translation invariance, is function of t = |t2 − t1|. The Fourier transform of

this quantity is

U(α, β) =
1

N2
< treiαM(t1)treiβM(t2) > (5.3)

This correlation function may easily be reduced to the correlation function of the time-

independent two matrix model in the Gaussian ensemble [20]. Indeed this harmonic oscil-

lator quantum mechanics leads to

U(α, β) =
1

N2

(

et

sinht

)N2/2 ∫

dAdBtreiαAtreiβBe−
1
2
shttr[(A2+B2)et−2AB] (5.4)

Rescaling of A,B,α and β by a factor
√
e−tsinht, we obtain a time-independent two-matrix

model

U(α, β) =
1

Z

∫

dAdBtreiαAtreiβBe−
1
2
tr(A2+B2−2cAB), (5.5)

with a coupling constant

c = e−t.

For convenience, we denote A and B by M1 and M2 in the following.

6 Duality formula for the two-matrix model

We consider the correlation function of the characteristic polynomials in the two-matrix

model,

J =<

k1
∏

α=1

det(λα −M1)

k2
∏

β=1

det(µβ −M2) > (6.1)

where the average is perfomed over a two-matrix Gaussian distribution with an external

source A acting on one of the two N ×N matrices,

P (M1,M2) =
1

Z
e−

1
2
trM2

1−
1
2
trM2

2−ctrM1M2−trM1A (6.2)

The external source A will be used here again mean to tune a p-spin structure in the moduli

space. Note that when t → ∞ the parameter c = e−t vanishes and the two matrices M1

and M2 decouple.
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From (6.1) we shall determine a new dual model of Kontsevich type in the large N

limit. The duality formula for J is obtained by the use of Grassmann variables as in the

one matrix case [6, 16], but for the two matrix case a new structure appears.

Let us introduce the Grassmann variables ψαi and χβi , where α = 1, . . . , k1, and β =

1, . . . , k2. Then

J =<

∫

dψ̄dψdχ̄dχeN [ψ̄α(λα−M1)ψα+χ̄β(µβ−M2)χβ ] > (6.3)

Since the probability P is Gaussian, one can integrate out the matrices M1 and M2. This

generates four-fermion terms that may be disentangled with the help of three auxiliary

matrices: B1 a k1 × k1 Hermitian matrix, B2 a k2 × k2 Hermitian matrix and D a complex

k1 × k2 rectangular matrix. The identities

e
− N

2(1−c2)
ψ̄ψψ̄ψ

=

∫

dB1e
−N

2
trB2

1+ iN√
1−c2

trB1ψ̄ψ
(6.4)

e
− N

2(1−c2)
χ̄χχ̄χ

=

∫

dB2e
−N

2
trB2

2+ iN√
1−c2

trB2χ̄χ
(6.5)

e
Nc

1−c2
ψ̄χχ̄ψ

=

∫

dDdD†e
−NtrD†D+N

q

c
1−c2

tr(Dψ̄χ+D†χ̄ψ)
(6.6)

allow to represent J as

J =

∫

dB1dB2dD
†dDe−

N
2

tr(B2
1+B2

2+2D†D)

×
N
∏

i=1

det





(

λα − ai
1−c2

)

δα,α′ + i√
1−c2B1

√

c
1−c2D

√

c
1−c2D

†
(

µβ + c
1−c2 ai

)

δβ,β′ + i√
1−c2B2





(6.7)

After the shift B1 → B1 + i
√

1 − c2λα,α′δα,α′ and B2 → B2 + i
√

1 − c2µβ,β′δβ,β′ , we obtain

the dual expression for J :

J = C

∫

dB1dB2dD
†dDe−

N
2

tr(B2
1+B2

2+2D†D)−iN
√

1−c2trB1Λ1−iN
√

1−c2trB2Λ2

×e−
PN

i=1 trlog(1−Xi), (6.8)

where the matrices Xi are defined by

Xi =

(

i
√

1 − c2B1
ai

√

c(1 − c2)Dai

−
√
c(1−c2)

c
D†

ai
− i

√
1−c2
c

B2
ai

)

. (6.9)

We now expand log(1 − Xi) in powers of Xi. Let us first consider the case of a source

matrix A mutiple of the identity: ai = a, i = 1 · · ·N . Imposing the constraint

a = (1 − c2) (6.10)

the quadratic term trB2
1 cancels with the one coming from the expansion of log(1 − X).

This critical constraint corresponds to the edge of the the spectrum for the matrix M1.

Note that the B2
2 term is not cancelled at this critical point because of the coupling c.
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Given the factor N in the exponent, the edge scaling limit under considera-

tion corresponds to

B1 ∼ O
(

N− 1
3

)

, B2 ∼ O
(

N− 1
2

)

,D ∼ O
(

N− 1
3

)

(6.11)

in the large N limit. In this limit most terms disappear; for instance

Ntr
(

D†DB2

)

∼ N− 1
6 (6.12)

is negligible. Then, in the large N limit (6.11), we obtain the partition function Z, i.e. J

after dropping the negligible terms,

Z =

∫

dB1dB2dD
†dDe

−iNtrB1Λ1−iNtrB2Λ2+
i
3
NtrB3

1−
N
2

“

1− 1
c2

”

trB2
2+iNtr(DD†B1) (6.13)

Since the matrix B2 matrix is decoupled we can integrate it out. Then, dropping the

decoupled part, we find the partition function

Z =

∫

dB1dD
†dDe−itrB1Λ1+ i

3
trB3

1+itrDD†B1 (6.14)

where we have absorbed the powers of N given by the scaling (6.11). We may now integrate

out the matrices D and D†; this yields a one matrix integral with a logarithmic potential,

Z =

∫

dB1e
i
3
trB3

1−k2trlogB1−itrB1Λ1 . (6.15)

The appearance of a logarithmic term is a characteristic of models with central charge

equal to one.

We now consider the free energy of this logarithmic Kontsevich model (p=2) (6.15).

Three different, but consistent, methods will be used. (For convenience k2 is denoted as q

in what follows.)

i) HarishChandra-Itzykson-Zuber method After use of the HarishChandra-

Itzykson-Zuber formula, the partition function Z is given by

Z =

∫

dBe
i
3
trB3−qtrlogB−itrBΛ2

=
1

∆(l2)

∫ k1
∏

i=1

dxi∆(x)

k1
∏

i=1

e−ixil2i + i
3
x3

i −qlogxi (6.16)

where the xi’s are the eigenvalues of B, the li the eigenvalues of Λ, and ∆(x) the Vander-

monde determinant ∆(x) =
∏

i<j(xi − xj). It may be replaced in the integrand by the

Vandermonde of differential operators ∂
∂l2i

,

Z =
∏ 1

(l2i − l2j )

(

∂

∂l2i
− ∂

∂l2j

)

∏

ζ(li) (6.17)

where

ζ(li) =

∫

dxe
i
3
x3−ixl2i −qlogx. (6.18)
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Rescaling xi → xi/2
1/3 and li → li/2

1/3, and with the change l → il, we have

ζ(l) =
e−

1
3
l3

lq+
1
2

∫

dxe
− 1

2
x2+ i

6l3/2
x3−qlog

“

1+ x

il3/2

”

(6.19)

Expanding for large l, we obtain

logZ = −
[

1

6
t31 +

1

24
t3 + qt2t1 +

1

2
q2t3

]

+

[

1

6
t31t3 +

1

48
t23 +

1

8
t1t5 +

2

3
qt6 + qt21t4

+qt1t2t3 +
1

6
qt32 +

3

2
q2t1t5 +

1

4
q2t23 + q2t2t4 +

2

3
q3t6

]

+O

(

1

l9

)

(6.20)

where we have used the moduli parameters

tn =

k1
∑

i=1

1

lni
(6.21)

When q → 0, we recover the result of the one-matrix Kontsevich model.

For the relation to the genus g, we have to identify the powers of 1
N2 . In the limit

in which

k1 ∼ q ∼ N, li ∼ N
1
3 (6.22)

we find

t1 ∼ O
(

N
2
3

)

, tn ∼ O
(

N1− 1
3
n
)

(6.23)

The genus expansion of the free energy

logZ =

∞
∑

g=0

agN
2−2g (6.24)

follows from this limit. For instance, t31,qt1t2, and q2t3 are contributions to genus zero,

and t3 to genus one.

ii) replica method We return to the integral (6.16). After the shift B → B + Λ,

which eliminates the terms linear in B, one can expand for large Λ. Then the logarithmic

potential, trlog(B + Λ) expanded in powers of Λ−1 yields trBn vertices. The situation is

similar to that of the generalized Kontsevich model where the trBp+1 terms led to the

moduli space of p-th curves, and spin structures appeared. The occurence of t2,t4 and t5
indicates this fact.

We consider the moduli space for Riemann surfaces with marked points. Although

there is a logarithmic potential, the model allows one to consider marked points, whose

number is equal to the number of tn.

We have developed the replica method k1 → 0 in a previous article [6]. Any average

of the products of vertices trBn are obtained in the replica limit k1 → 0, where B is a

k1 × k1 Hermitian matrix; for a Gaussian ensemble, the average is given by the replica

limit formula (2.19).
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Expanding the logarithmic term, after the shift B → B + Λ, and the use of the

formula (2.19), we obtain the replica limit, which gives the required intersection numbers

with one marked point. Indeed it leads easily to

logZ = −
(

1

24
+

1

2
q2
)

t3 +

(

2

3
q +

2

3
q3
)

t6 +O

(

1

Λ9

)

(6.25)

This result agrees completely with the expression (6.20) for one marked point.

iii) differential equation of Virasoro type Since the free energy logZ is expressed

in terms of the moduli parameters tn, as was the case in the original Kontsevich model

(q=0 case), it is natural to investigate here again the KdV-like differential equations or

string equations. Although there is a logarithmic potential one may use a Schwinger-Dyson

equation [22, 23].

We first consider the simple case, k1 = 1, a one by one matrix, i.e. a c-number.

Denoting l1 = x, one finds

Z = e−
1
3
x3 1

xq+
1
2

g(x). (6.26)

The Schwinger-Dyson (Virasoro) equation follows from the identity
∫

dB
∂

∂B
e

i
3
trB3−itrBΛ2−qtrlogB = 0 (6.27)

The matrix B is the replaced by ∂
∂Λ2 . For the logarithmic potential, it means ( ∂

∂Λ2 )−1.

Therefore we need to apply a differential operator in order to get rid of this integral. We

find easily that when B is just a real number (k1 = 1), the function g(x) satisfies a third

order differential equation,
[

(

∂

x∂x

)3

− 2 + 2q − x
∂

∂x

]

e−
1
3
x3

xq+
1
2

g(x) = 0 (6.28)

i.e.

(−(1 + 2q)(5 + 2q)(9 + 2q) + (−10 − 48q − 24q2)x3)g

+((66 + 96q + 24q2)x+ (24 + 48q)x4 + 16x7)g′(x)

+(−36x2 − 24qx2 − 24x5)g′′ + 8x3g′′′(x) = 0. (6.29)

This provides the large x expansion,

g(x) = −1 +
1

x3

(

5

24
+ q +

q2

2

)

− 1

x6

(

385

1152
+

73

24
q +

161

48
q2 +

7

6
q3 +

1

8
q4
)

+
1

x9

(

85085

82944
+

6259

384
q +

58057

2304
q2 +

2075

144
q3 +

725

192
q4 +

11

24
q5 +

1

48
q6
)

+O

(

1

x12

)

.

(6.30)

For k1 = 2, a two by two matrix, we denote x = l1 and y = l2; then
[

(

∂

x∂x

)3

+
∂

x∂x

(

2

x2 − y2

(

∂

x∂x
− ∂

y∂y

))

− 2 + 2q − x
∂

∂x

]

e−
1
3
(x3+y3)

(xy)q+
1
2 (x+ y)

g(x, y) = 0

(6.31)
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The solution, after symmetrization over x and y, agrees with the expression (6.20).

When x is small, the equation (6.29) leads to a different series expansion. The differ-

ential equation for g in (6.29) has three different solutions,

g(x) ∼ xq+
1
2 , g(x) ∼ xq+

5
2 , g(x) ∼ xq+

9
2 (6.32)

For small x, we have from the first solution, noting that l = x,

Z = e−
1
3
l3
(

1 +
1

3
l3 +

(

− 1

24
q +

7

72

)

l6 +O
(

l9
)

)

(6.33)

This solution for small l is in a different phase from Kontsevich’s phase; it may be related

to one of the two phases of the unitary matrix model [23–25].

We now consider the case p > 2. After the integration over the D-fields within the

matrix X, we also obtain the logarithmic term trlogB, but corrections appear. By tuning

the external source with the conditions (3.3), we obtain

Z =

∫

dXe
− 1

p+1
trXp+1+trXΛp

(6.34)

where X is given by

X =

(

B D

D† 0

)

. (6.35)

where we have scaled out the factors
√

1 − c2 in Xi of (6.8), and put B = B1 and B2 = 0.

We expand the potential,

trXp+1 = trBp+1 + (p+ 1)trDD†Bp−1 +
1

2
(p+ 1)(p − 2)tr

(

DD†
)2
Bp−3

+
1

6
(p+ 1)(p − 3)(p − 4)tr

(

DD†
)3
Bp−5 + · · · . (6.36)

For p = 3, we obtain,

Z =

∫

dBdD†dDe
−
h

1
4
trB4+trDD†B2+ 1

2
tr(DD†)

2
i

+trBΛ3

. (6.37)

The integration of the D-field can not be done explicitly for the general values of k1 and

k2 (B is a k1 × k1 Hermitian matrix and D is a k1 × k2 complex matrix). We make here a

perturbation for the large B in lower orders. Expanding the term exp(−1
2tr(DD†)2), we find

Z =

∫

dBe
+trBΛ3− 1

4
trB4−2k2trlogB− 1

2
k2
2

“

tr 1
B2

”2
− 1

2
k2tr 1

B4 +O
“

1
B8

”

. (6.38)

For p = 4 case, the partition function Z becomes similarly

Z =

∫

dBdDdD†e−
1
5
trB5+trDD†B3+tr(DD†)2B+trBΛ4

=

∫

dBe
trBΛ4− 1

5
trB5−3k2trlogB−k2tr 1

B5 −k2
2tr 1

B2 tr 1
B3 +O

“

1
B10

”

. (6.39)
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For general p, after integration over the D-field in a perturbation, we obtain

Z =

∫

dBetrBΛp− 1
p+1

trBp+1−(p−1)k2trlogB− p−2
2
k2tr 1

Bp+1 −
p−2
2
k2
2tr 1

B2 tr 1

Bp−1 +··· (6.40)

In order to identify the intersection numbers, we expand in powers of 1
Λ . For this purpose,

we shift B → B+ Λ. New terms in the exponent, which are corrections to the logarithmic

term, have the form of the product of two traces. In the large Λ case, the fifth term is of

the form

tr
1

(Λ +B)2
tr

1

(Λ +B)p−1
∼ −2

(

tr
1

Λ3
B

)

· tr 1

Λp−1
+ · · · (6.41)

The term tr 1
Λp−1 is tp−1; such terms appear in the c = 1 string theory [14, 15].

We now evaluate the intersection numbers for a small number of marked points, and

for lower orders in 1
Λ . In this case, we can neglect the above correction terms, and we

approximate the partition function by

Z =

∫

dBe
− 1

p+1
trBp+1−(p−1)k2trlogB+trBΛp

(6.42)

We find, at order 1
Λp+1 , up to three marked points,

logZ =

(

p− 1

24

)

1

p

∑ 1

λi
p+1 +

(

p(p− 1)

12

)

1

p

(

∑ 1

λi

)2(
∑ 1

λi
p−1

)

+

(

p(p− 1)

2
k2

)

1

p

(

∑ 1

λ2
i

)(

∑ 1

λi
p−1

)

+

(

(p− 1)2

2
k2
2

)

1

p

∑ 1

λi
p+1

+(higher order) (6.43)

where the overall factor 1
p is a normalization constant absorbed in λ. Thus we find the two-

matrix model for c = 1, obtained from the characteristic polynomials, reduces to the one

matrix model, and the topological invariants becomes similar to the intersection numbers

of p-spin curves.

When we put p→ −1, we find that the last term in (6.40)
(

tr 1
B2

)(

tr 1
Bp−1

)

behaves like

(

tr
1

B2

)(

tr
1

Bp−1

)

=

(

tr
1

B2

)

(

trB2
)

∼
(

tr
1

Λ2

)

(

trB2
)

(6.44)

where we make a shift B → Λ + B. In the case p → −1, when B is order of Λ, all the

terms of the potential should be order of one, and indeed tm(trBm) is order of one for the

Λ-dependence. Therefore, the potential has a series of
∑

tm(trBm). Such terms appear in

the c=1 string theory from the calculation of the tachyon correlators [14, 15].

7 Discussion

In this article, we have considered the explicit p-dependence of the intersection numbers of

moduli spaces of p-th spin curves based on one and two Gaussian matrix models.

In the one-matrix case, the limit p → −1 gives a generating function of the Euler

characteristics. In the two-matrix case, we have obtained a logarithmic matrix model
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with polynomial corrections, which is related to the generating function for the tachyon

correlators [14, 15].

The duality, on which the present analysis relies, is the relation between the characteris-

tic polynomials of two different Gaussian matrices. The characteristic polynomials are com-

puted as determinants, expressed in terms of Grassmann variables ψαi ,(i = 1, . . . , N, α =

1, . . . k). In the large N limit the p-th singularity is tuned through an appropriate choice

of the eigenvalues of an external source matrix A. One parameter remains, namely the

number of different λα, α = 1 · · · k. The Fourier transform with respect to the λα yields the

correlation function U(s1, . . . , sn). The symmetry between N and k becomes then implicit.

Although this duality might be related to the open/closed string duality [26–28], we have

not been able yet to reach a clear picuture in this direction.

Acknowledgments

We thank E. Witten and D. Gaiotto for a discussion on the duality formula. We also thank

R. Penner for a discussion of the two matrix-model. S.H. is supported by Grant-in-Aid for

Scientific Research (C) 19540395 of JSPS.

A Three point correlation function U(s1, s2, s3)

For the three-point correlation function U(s1, s2, s3), we address ourselves to the determi-

nant terms in (2.23) similar to the two-point case. The longest cycle in the determinant of

a 3 × 3 matrix is

det(aij)|longest = a12a23a31 + a13a21a32 (A.1)

where aij = 1
ui−uj+

1
2
(si+sj)

.

We consider the first cycle of (A.1), ( the second cycle is almost the same),

1

u1 − u2 + 1
2(s1 + s2)

1

u2 − u3 + 1
2(s2 + s3)

1

u3 − u1 + 1
2(s3 + s1)

=
2

s1 + s2 + s3

∫ ∞

0
dx

∫ ∞

0
dysh

(x

2
(s1 + s2 + s3)

)

×
[

e−
s2
2
x− s1+s2

2
y−(x+y)u1+yu2+xu3 + e−

s2
2
x− s2+s3

2
y−xu1−yu2+(x+y)u3

]

(A.2)

We express the two terms as

U(s1, s2, s3) = U I + U II . (A.3)
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After the shift si → si
N , using the notation N ′ = N

(

p−1
pc

) 1
p
, we have

U I =
2N ′

s1 + s2 + s3

(

1

s3

)
1
p
∫ ∞

0
dx

∫ ∞

0
dysh

(

x

2N ′ s
1
p

1 (s1 + s2 + s3)

)

e
− s2

2N′ s
1
p
1 x−

s1+s2
2N′ s

1
p
2 y−iv1

 

x+
“

s2
s1

” 1
p
y

!

+iyv2+i
“

s1
s3

” 1
p
xv3
G(v1)G(v2)G(v3) (A.4)

U II =
2N ′

s1 + s2 + s3

(

1

s3

)
1
p
∫ ∞

0
dx

∫ ∞

0
dysh

(

x

2N ′ s
1
p

1 (s1 + s2 + s3)

)

e
− s2

2N′ s
1
p
1 x−

s2+s3
2N′ s

1
p
2 y−iv1x−iyv2+i

 

“

s1
s3

” 1
p
x+
“

s2
s3

” 1
p
y

!

v3

G(v1)G(v2)G(v3) (A.5)

where G(vi) is defined by (4.5). Expanding G(vi) in powers of 1
N ′ , U(s1, s2, s3) is expressed

in terms of the function φp(x).

The intersection numbers < τn1,m1τn2,m2τn3,m3 > is obtained from the coefficients of

s
n1+

m1+1
p

1 sn2+m2+1p
2 s

n3+
m3+1

p

3 .

In this three point correlation function, non-trivial genus zero terms appear. From U II

in (A.5), we obtain the term s
1
p

1 s
1
p

2 s
1− 1

p

3 in the large N ′ limit. This leads to

< τ0,0τ0,0τ0,p−2 >g=0= 1 (A.6)

Since there is terms of (s2s3 )
1
p y and (s1s3 )

1
px in (A.5), these terms contribute in the large N

limit as s
1+q1

p

1 s
1+q2

p

2 s
1− 1+q1+q2

p

3 , and we obtain the intersection numbers,

< τ0,q1τ0,q2τ0,p−2−q1−q2 >g=0= 1 (A.7)

This is related to the property of ring correlators found in [4]

< τ0,q1τ0,q2τ0,q3 >g=0= δq1+q2+q3,p−2 (A.8)

which is important for the chiral ring theory and superconformal theory for the primary

fields. From this result, the generating function F is obtained as

F =
∑

< τ0,q1τ0,q2τ0,q3 >g=0 t0,q1t0,q2t0,q3 +O(t4) (A.9)

and the superpotential W can be constructed from the structure constants Cijk defined by

Cijk =
∂3F

∂ti∂tj∂tk
(A.10)

where we put

ti = t0,i−1, (i = 1, . . . , p− 1) (A.11)

If we consider only primary field, neglecting gravitational descendants, we only need

the terms
∏

m t0,m. When we consider this primary field, in the genus zero case, we obtain

therefore, for instance for p=5,

F =
1

2
t20,0t0,3 + t0,0t0,1t0,2 +

1

3!
t30,1 +O(t4) (A.12)

and the structure constants become C114 = C123 = C222 = 1 for p=5 case.
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B The n-point correlation function for n ≥ 4

The calculation of the n-point correlation function U(s1, . . . , sn) at edge singularities follows

the same steps as for the n=2 and 3 cases. For the discussion of the higher chiral ring

structure, we need more than three points, and thus we consider n≥4.

One of the longest cycle terms in the determinant for the four point correlation function

U(s1, s2, s3, s4) is

a12a23a34a41 =
1

s1 + s2 + s3 + s4
(a12 + a23)(a34 + a41)

×
(

1

u1 − u3 + 1
2(s1 + 2s2 + s3)

− 1

u1 − u3 − 1
2(s1 + 2s4 + s3)

)

(B.1)

with

aij =
1

ui − uj + 1
2(si + sj)

(B.2)

This term can be expressed by the integrals,

a12a23a34a41 = − 2

s1 + s2 + s3 + s4

∫ ∞

0
dxdydze−x(u1−u3)− 1

2
(s2−s4)x

×sinh

(

1

2
x(s1 + s2 + s3 + s4)

)

×
[

exp

(

−1

2
y(s1 + s2) −

1

2
z(s3 + s4) − u1y + yu2 − zu3 + zu4

)

+exp

(

−1

2
y(s1 + s2) −

1

2
z(s1 + s4) − u1y + yu2 − zu4 + zu1

)

+exp

(

−1

2
y(s2 + s3) −

1

2
z(s3 + s4) − u2y + yu3 − zu3 + zu4

)

+ exp

(

−1

2
y(s2 + s3) −

1

2
z(s1 + s4) − u2y + yu3 − zu4 + zu1

)]

(B.3)

Using the same change of variables and scalings as before, we obtain

U(s1, s2, s3, s4) = U I + U II + U III + U IV (B.4)

These four terms are given by σ = s1 + s2 + s3 + s4,

U I = −2N ′3

σ

(

1

s4

)
1
p
∫

dvi
(2π)4

sinh

(

x

2N ′ s
1
p

1 σ

) 4
∏

i=1

G(vi)

×exp

[

− 1

2N ′ (s2 − s4)s
1
p

1 x− 1

2N ′ (s1 + s2)s
1
p

2 y −
1

2N ′ (s3 + s4)s
1
p

3 z

− ixv1 − i

(

s2
s1

) 1
p

yv1 + iyv2 + i

(

s1
s3

) 1
p

xv3 − izv3 + i

(

s3
s4

) 1
p

zv4

]

(B.5)
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U II = −2N ′3

σ

(

1

s4

)
1
p
∫

dvi
(2π)4

sinh

(

x

2N ′ s
1
p

1 σ

) 4
∏

i=1

G(vi)

×exp

[

− 1

2N ′ (s2 − s4)s
1
p

1 x− 1

2N ′ (s1 + s2)s
1
p

2 y −
1

2N ′ (s1 + s4)s
1
p

3 z

− ixv1− i

(

s2
s1

)
1
p

yv1+i

(

s3
s1

)
1
p

zv1+ iyv2+i

(

s1
s3

)
1
p

xv3− i

(

s3
s4

)
1
p

zv4

]

(B.6)

U III = −2N ′3

σ

(

1

s4

)
1
p
∫

dvi
(2π)4

sinh

(

x

2N ′ s
1
p

1 σ

) 4
∏

i=1

G(vi)

×exp

[

− 1

2N ′ (s2 − s4)s
1
p

1 x− 1

2N ′ (s2 + s3)s
1
p

2 y −
1

2N ′ (s3 + s4)s
1
p

3 z

− ixv1 − iyv2 + i

(

s1
s3

)
1
p

v3x− izv3 + i

(

s2
s3

)
1
p

yv3 + i

(

s3
s4

)
1
p

zv4

]

(B.7)

U IV = −2N ′3

σ

(

1

s4

) 1
p
∫

dvi
(2π)4

sinh

(

x

2N ′ s
1
p

1 σ

) 4
∏

i=1

G(vi)

×exp

[

− 1

2N ′ (s2 − s4)s
1
p

1 x− 1

2N ′ (s2 + s3)s
1
p

2 y −
1

2N ′ (s1 + s4)s
1
p

3 z

− ixv1+i

(

s3
s1

)
1
p

zv1− iyv2+i

(

s1
s3

)
1
p

xv3+ i

(

s2
s3

)
1
p

yv3− i

(

s3
s4

)
1
p

zv4

]

(B.8)

From U III , we obtain the term s
2
p

1 s
2
p

2 s
1− 1

p

3 s
1− 1

p

4 which gives the intersection number <

τ0,1τ0,1τ0,p−2τ0,p−2 >g=0. In this large N’ limit, we have

U III = −
(

s1
s4

)
1
p
∫ ∞

0
dxdydz

∫

dvi
(2π)4

x ·
(

s4
2
s

1
p

1 x

)

·
(

1

2
s3s

1
p

2 y

)

· i
(

s2
s3

)
1
p

yv3

exp

[

− i
p

p

∑

i

vpi − ixv1 + i

(

s3
s1

) 1
p

zv1 − iyv2

]

×

exp

[

i

(

s1
s3

)

xv3 + i

(

s2
s3

) 1
p

yv3 − i

(

s3
s4

) 1
p

zv4

]

(B.9)

Expanding the factors exp[i(s1s3 )xv3 + i(s2s3 )
1
p yv3 − i(s3s4 )

1
p zv4] we obtain the series of the

intersection numbers for the primary fields in the genus zero case,

< τ0,q1τ0,q2τ0,p−q1−q2+q3, τ0,p−2−q3 >g=0 (B.10)

where q1, q2 = 1, 2, . . ., and q3 = 0, 1, 2, . . .. The other three terms U I , U II and U IV do not

yeild terms of the type s
q1+1

p

1 s
q2+1

p

2 s
1− q1+q2−q3

p

3 s
1− q3+1

p

4 .
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For p=2, the term (B.10) does not exist, since τ0,1 is not allowed. For higher n-point

correlations (n ≥ 5), there is no correction for the same reason. Therefore, for p=2, the

function F for the primary field is

F =
1

6
t30,0 (p = 2). (B.11)

For p=3, we obtain from (B.10) and (A.8),

F =
1

2
t20,0t0,1 +

1

72
t40,1 (B.12)

For p=4, we obtain (B.10) and (A.8),

F =
1

2
t20,0t0,2 +

1

2
t0,0t

2
0,1 +

1

16
t20,1t

2
0,2 +

1

8 · 5! t
5
0,2 (B.13)

The last term is evaluated from the five point correlation function, which has the form, for

general p,

s
1− 1+q1

p

1 s
3+q2

p

2 s
1− q2+1

p

3 s
3+q1

p

4 s
1− 1

p

5 ∼ t0,p−2−q1t0,2+q2t0,p−2−q2t0,2+q1t0,p−2 (B.14)

which leads to the last term in (B.13) for p=4. We have investigated the intersection

numbers of primary fields, but other gravity descendants can be obtained in the same

ways, which would be in factor of tn,m (n 6= 0).

C Ginzburg-Landau potential for primary fields and Gelfand-Dikii equa-

tion

The structure constant Cijk defined by (A.10) are obtained from the n-point correlation

function through the intersection numbers with n marked points. In this appendix, we

discuss the relation to the superpotential [4]. Using the notation

ti = t0,i−1 (i = 1, 2, . . .) (C.1)

and the metric ηnm = δn+m,p, we define

Ckij =

p−1
∑

m=1

Cijmη
mk. (C.2)

In this notation, F becomes, in the p=4 case for instance,

F =
1

2
t21t3 +

1

2
t1t

2
2 +

1

4
t22t

2
3 +

1

60
t53 (C.3)

We find that the Witten, Dijkgraaf, Verlinde,@Verlinde relation@[4, 13]

Cmij Cmkl = CmikCmjl (C.4)

holds for the structure constants that we have computed.

– 26 –



J
H
E
P
0
4
(
2
0
0
9
)
1
1
0

Then the Ckij have a ring structure,

φiφj =
∑

k

Ckijφk (mod[W ′(x)]) (C.5)

where φi is defined by the derivative of the Landau-Ginzburg potential W (x)

φi = −∂W
∂ti

(C.6)

We have obtained the function F by the evaluation of the intersection numbers of

primary fields up to the 6-point correlation function. For the p=5 case,

F =
1

2
t20,0t0,3 + t0,0t0,1t0,2 +

1

6
t30,1 +

1

4
t20,1t

2
0,3

+
1

2
t0,1t

2
0,2t0,3 +

1

6
t0,1t

3
0,2 +

1

2
t20,1t0,2t0,3

+
1

12
t40,2 +

1

6
t20,2t

3
0,3 +

1

120
t60,3 (C.7)

This leads to C213 = C411 = C222 = 1, C224 = t4, C231 = t3, C232 = t4, C244 = t2, C334 =

t2 + t24, C333 = 2t3, C332 = t4, C341 = t3t4, C342 = t3, C444 = t23 + t34, C434 = 2t3t4.

The ring structure (C.5) holds with

W (x) =
1

5
x5 − t4x

3 − t3x
2 + (t24 − t2)x+ (t3t4 − t1) (C.8)

The function φi is

φi = −∂W
∂ti

(C.9)

and the equation of the ring structure (C.5) holds with modW ′(x) = mod[x4 − 3t3x
2 −

2t3 + t4 − t2].

The Landau-Ginzburg potential W in (C.8) is the same as the superpotential of the

twisted N=2 superconformal theory for A4 type. From the singularity theory, this poten-

tial (C.8) is called a swallow tail.

Thus we find that the random matrix theory with an external source for the p-th

critical point gives the Landau-Ginzburg potential of the N = 2 superconformal theory for

the primary fields in the genus zero case. Our integral expression for the n-point correlation

function may be used without difficulties to give the intersection numbers and the gravity

descendants for higher genus.

We note that these algebraic structures reduce to the Gelfand-Dikii equation, which

gives the generalized KdV hierarchies. For instance, in the case p=3, we obtain from our

formulation the Boussinesque equation,

∂2F

∂t20,1
=
∂4F

∂t40,0
− 2

3

(

∂2F

∂t20,0

)2

(C.10)

and it’s higher gravitational desendents. This hierarchy can be derived from Gelfand-Dikii

equation [4]. This equation is expressed by [12]

i
∂Q

∂tn,m
=

[

Q
n+ m+1

p

+ , Q

]

· Cn,m√
p

(C.11)
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which is the generalization of Lax equation. The Q is given

Q = Dp −
p−2
∑

i=0

ui(x)D
i (C.12)

and the fraction power of Q is

Q
1
p = D +

∑

i>0

wiD
−i (C.13)

From this formulation, we obtain the relation to F as

∂2F

∂t0,0tn,m
= −Cn,mres

(

Q
n+ m+1

p

)

(C.14)

where

Cn,m =
(−1)npn+1

(m+ 1)(p +m+ 1) · · · (pn+m+ 1)
(C.15)
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